We are interested in how molecules, macromolecules, vesicles, and both biological and synthetic elements can be combined to create life-like behaviours and bio-inspired biotechnologies. Our work focuses on designing and constructing synthetic cells, minimal systems built from the bottom up using biomolecules and synthetic components. These systems offer unprecedented potential to unravel fundamental biological principles and pave the way for novel applications. Using a bottom-up approach, we mimic biological complexity through design concepts – combining principles of soft matter, physical chemistry, and biochemistry, we bridge physical sciences, engineering, and biomedical sciences to translate this knowledge into innovative nanomedicines and bio-inspired technologies.
Publications
2025
- J. Simmchen et al, Perspective on interdisciplinary approaches on chemotaxis, Angewandte Chemie International Edition, (2025), https://doi.org/10.1002/anie.202504790
- N. Harasha et al, Modeling Feasible Locomotion of Nanobots for Cancer Detection and Treatment, arXiv preprint (2025), https://doi.org/10.48550/arXiv.2507.12400
- Contini C., From light to life-like protocells. Nature Synthesis (2025). https://doi.org/10.1038/s44160-025-00849-w
- M. E. Allen, Y. Sun et al, Thermally Driven Dynamic Behaviors in Polymeric Vesicles. Small 2025, 2411220. https://doi.org/10.1002/smll.202411220
- M. E. Allen, Y. Sun et al, Thermally Driven Dynamic Behaviors in Polymeric Vesicles. Small Front Cover 2025, https://onlinelibrary.wiley.com/toc/16136829/2025/21/33
- Kariuki R., et al, Interactions of nanoparticles with living and synthetic bio-membrane. Chemical Society Reviews, 2025, DOIhttps://doi.org/10.1039/D5CS00841G.
- Design Principles for Engineering Ionic Liquid-Gold Nanoparticles for Therapeutic Delivery to the Brain, ACS Nano, 2025, 19, 27, 24806–24816. https://doi.org/10.1021/acsnano.5c02375
- Kariuki R., et al, Gold Nanoparticle Adsorption and Uptake are Directed by Particle Capping Agent. Small Science, 2025, 5: 2500060. https://doi.org/10.1002/smsc.202500060
- O’Toole N., et al, Microfluidic generation of bacterial biohybrids for magnetic guidance and content release, Chemical Communications, 2025,61, 12155-12158, DOIhttps://doi.org/10.1039/D5CC00449G
2024
- Lázaro, Isabel Abánades et al., 35 challenges in materials science being tackled by PIs under 35(ish) in 2024, Matter, 2024, Volume 7, Issue 11, 3699 – 3706, https://www.cell.com/matter/abstract/S2590-2385(24)00505-8
- S. Acosta-Gutiérrez, et al., Correction to “A Multiscale Study of Phosphorylcholine Driven Cellular Phenotypic Targeting”, ACS Central Science 2024 10 (7), 1423-1423, https://doi.org/10.1021/acscentsci.4c00878
2023
- M.E. Allen et al, Biomimetic behaviors in hydrogel artificial cells through embedded organelles, PNAS U.S.A. 120 (35) e2307772120, https://doi.org/10.1073/pnas.2307772120
- Pilkington, C.P., et al. A microfluidic platform for the controlled synthesis of architecturally complex liquid crystalline nanoparticles. Sci Rep 13, 12684 (2023). https://doi.org/10.1038/s41598-023-39205-3
2022
- S. Acosta-Gutiérrez et al., A Multiscale Study of Phosphorylcholine Driven Cellular Phenotypic Targeting, ACS Central Science, 2022, 8 (7), 891-904 DOI: 10.1021/acscentsci.2c00146
- C. Contini, et al., Manufacturing polymeric porous capsules, Chem. Commun., 2022,58, 4409-4419, DOIhttps://doi.org/10.1039/D1CC06565C
2021
- Walczak, M., et al. Responsive core-shell DNA particles trigger lipid-membrane disruption and bacteria entrapment. Nat Commun 12, 4743 (2021). https://doi.org/10.1038/s41467-021-24989-7
- X. Zhang, C. Contini, et al., How does the hydrophobic content of methacrylate ABA triblock copolymers affect polymersome formation?, J Polym Sci 2021, 59(15), 1724. https://doi.org/10.1002/pol.20210371
- Zhang, S., Contini, C., et al. Engineering motile aqueous phase-separated droplets via liposome stabilisation. Nat Commun 12, 1673 (2021). https://doi.org/10.1038/s41467-021-21832-x
2020
- Scarpa E, et al. (2020) Tuning cell behavior with nanoparticle shape. PLoS ONE 15(11): e0240197. https://doi.org/10.1371/journal.pone.0240197
- H. Kokot, et al, Prediction of Chronic Inflammation for Inhaled Particles: the Impact of Material Cycling and Quarantining in the Lung Epithelium. Adv. Mater. 2020, 32, 2003913. https://doi.org/10.1002/adma.202003913
- Contini, C., et al. Size dependency of gold nanoparticles interacting with model membranes. Commun Chem 3, 130 (2020). https://doi.org/10.1038/s42004-020-00377-y
- F. Ambroz, et al, Room Temperature Synthesis of Phosphine-Capped Lead Bromide Perovskite Nanocrystals without Coordinating Solvents. Part. Part. Syst. Charact. 2020, 37, 1900391. https://doi.org/10.1002/ppsc.201900391
2018
- Contini, Claudia et al., Bottom-Up Evolution of Vesicles from Disks to High-Genus Polymersomes, iScience, Volume 7, 132 – 144, 2018, https://www.cell.com/iscience/fulltext/S2589-0042(18)30130-5
- T. J. Macdonald et al., TiO2 nanofiber photoelectrochemical cells loaded with sub-12 nm AuNPs: Size dependent performance evaluation, Materials Today Energy, Volume 9, 2018, Pages 254-263, https://doi.org/10.1016/j.mtener.2018.06.005.
- Contini, C., et al., (2017). Nanoparticle–membrane interactions. Journal of Experimental Nanoscience, 13(1), 62–81. https://doi.org/10.1080/17458080.2017.1413253
2017
- Adrian Joseph et al. Chemotactic synthetic vesicles: Design and applications in blood-brain barrier crossing.Sci. Adv.3,e1700362(2017).DOI:10.1126/sciadv.1700362
- Robertson, J., Rizzello, L., Avila-Olias, M. et al. Purification of Nanoparticles by Size and Shape. Sci Rep 6, 27494 (2016). https://doi.org/10.1038/srep27494




